p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23⋊3C42, C25.13C22, C24.523C23, C23.155C24, C22.262+ 1+4, C24.64(C2×C4), (C2×C42)⋊1C22, C2.8(C22×C42), (C23×C4).30C22, C22.27(C23×C4), C22.14(C2×C42), C23.204(C22×C4), C2.C42⋊70C22, (C22×C4).1231C23, C2.1(C22.11C24), (C4×C22⋊C4)⋊2C2, (C2×C22⋊C4)⋊16C4, C22⋊C4⋊45(C2×C4), (C22×C4)⋊11(C2×C4), C22⋊C4○2(C22⋊C4), (C2×C4).288(C22×C4), (C22×C22⋊C4).8C2, (C2×C22⋊C4).551C22, C2.C42○(C2.C42), C22⋊C4○(C2×C22⋊C4), SmallGroup(128,1005)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23⋊C42
G = < a,b,c,d,e | a2=b2=c2=d4=e4=1, ab=ba, eae-1=ac=ca, ad=da, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, de=ed >
Subgroups: 828 in 456 conjugacy classes, 260 normal (5 characteristic)
C1, C2, C2, C2, C4, C22, C22, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C22×C4, C22×C4, C24, C24, C2.C42, C2×C42, C2×C22⋊C4, C23×C4, C25, C4×C22⋊C4, C22×C22⋊C4, C23⋊C42
Quotients: C1, C2, C4, C22, C2×C4, C23, C42, C22×C4, C24, C2×C42, C23×C4, 2+ 1+4, C22×C42, C22.11C24, C23⋊C42
(1 3)(2 4)(5 23)(6 24)(7 21)(8 22)(9 11)(10 12)(13 15)(14 16)(17 30)(18 31)(19 32)(20 29)(25 27)(26 28)
(2 14)(4 16)(6 22)(8 24)(10 28)(12 26)(17 32)(19 30)
(1 13)(2 14)(3 15)(4 16)(5 21)(6 22)(7 23)(8 24)(9 27)(10 28)(11 25)(12 26)(17 32)(18 29)(19 30)(20 31)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 18 25 7)(2 19 26 8)(3 20 27 5)(4 17 28 6)(9 21 15 31)(10 22 16 32)(11 23 13 29)(12 24 14 30)
G:=sub<Sym(32)| (1,3)(2,4)(5,23)(6,24)(7,21)(8,22)(9,11)(10,12)(13,15)(14,16)(17,30)(18,31)(19,32)(20,29)(25,27)(26,28), (2,14)(4,16)(6,22)(8,24)(10,28)(12,26)(17,32)(19,30), (1,13)(2,14)(3,15)(4,16)(5,21)(6,22)(7,23)(8,24)(9,27)(10,28)(11,25)(12,26)(17,32)(18,29)(19,30)(20,31), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,18,25,7)(2,19,26,8)(3,20,27,5)(4,17,28,6)(9,21,15,31)(10,22,16,32)(11,23,13,29)(12,24,14,30)>;
G:=Group( (1,3)(2,4)(5,23)(6,24)(7,21)(8,22)(9,11)(10,12)(13,15)(14,16)(17,30)(18,31)(19,32)(20,29)(25,27)(26,28), (2,14)(4,16)(6,22)(8,24)(10,28)(12,26)(17,32)(19,30), (1,13)(2,14)(3,15)(4,16)(5,21)(6,22)(7,23)(8,24)(9,27)(10,28)(11,25)(12,26)(17,32)(18,29)(19,30)(20,31), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,18,25,7)(2,19,26,8)(3,20,27,5)(4,17,28,6)(9,21,15,31)(10,22,16,32)(11,23,13,29)(12,24,14,30) );
G=PermutationGroup([[(1,3),(2,4),(5,23),(6,24),(7,21),(8,22),(9,11),(10,12),(13,15),(14,16),(17,30),(18,31),(19,32),(20,29),(25,27),(26,28)], [(2,14),(4,16),(6,22),(8,24),(10,28),(12,26),(17,32),(19,30)], [(1,13),(2,14),(3,15),(4,16),(5,21),(6,22),(7,23),(8,24),(9,27),(10,28),(11,25),(12,26),(17,32),(18,29),(19,30),(20,31)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,18,25,7),(2,19,26,8),(3,20,27,5),(4,17,28,6),(9,21,15,31),(10,22,16,32),(11,23,13,29),(12,24,14,30)]])
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2S | 4A | ··· | 4AV |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 4 |
type | + | + | + | + | |
image | C1 | C2 | C2 | C4 | 2+ 1+4 |
kernel | C23⋊C42 | C4×C22⋊C4 | C22×C22⋊C4 | C2×C22⋊C4 | C22 |
# reps | 1 | 12 | 3 | 48 | 4 |
Matrix representation of C23⋊C42 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,4,0,0,0,0,0,0,1,0,0],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,4,0] >;
C23⋊C42 in GAP, Magma, Sage, TeX
C_2^3\rtimes C_4^2
% in TeX
G:=Group("C2^3:C4^2");
// GroupNames label
G:=SmallGroup(128,1005);
// by ID
G=gap.SmallGroup(128,1005);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,456,219,675]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=e^4=1,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations